Магнитогидродинамический способ преобразования тепловой энергии в электрическую замкнутого цикла.

Номер документа 2420150041

РУБРИКА:
10. Инженерное обеспечение объектов

РУБРИКА ГРНТИ:
44.41.31. Установки прямого преобразования тепловой энергии в электрическую

АТРИБУТЫ:
Отрасли: Электроэнергетика
Тепловая энергия:
Электрическая энергия:
Виды топлива:
Водные ресурсы:

РЕКВИЗИТЫ:
Вид документа: Патент
Номер: 2226737
Автор (принявший орган): Политехнический институт СФУ 660074, г.Красноярск, ул.Киренского, 26 Тел: (391) 291-21-42, Славин В.С., Финников К.А
Дата: 08.10.2015
Регион: Красноярский край
Источник информации: www.freepatent.ru

ПОЛНЫЙ ТЕКСТ ДОКУМЕНТА:

Устройство содержит сверхзвуковое сопло 1, систему 2 импульсной инжекции электронного пучка, систему 3 импульсного сильноточного разряда, электроды 4 канала МГД-генератора, обмотку 5 электромагнита, электропроводные слои плазмы 6, канал 7 МГД-генератора, систему 8 питания нагрузки, нагрузку 9.

Способ осуществляется следующим образом.

Нагретый инертный газ (например, неон), температура которого может выбираться из диапазона 1500К<Т<3000К, разгоняют в сверхзвуковом сопле 1. Перед входом в канал МГД-генератора периодически с помощью системы 2 инжектируют пучок электронов высокой энергии, в результате чего в газовом потоке возникает локальная область с начальной концентрацией электронов ~1010 см-3. Затем, включением системы 3 импульсного сильноточного разряда, из области начальной ионизации формируют плазменный сгусток с концентрацией электронов 1015 см -3. Далее газовый поток вносит в МГД-канал 7 электропроводный плазменный сгусток 6, в котором из-за снижения концентрации электронов до 1014 см-3 повышается температура тяжелых частиц до 3500К-4000К. Здесь плазма замыкается на электроды 4. Индуцированный движением плазмы в поперечном магнитном поле, создаваемом обмоткой 5 электромагнита, электрический ток преобразуют системой 8 питания нагрузки. Полезная мощность выделяется в нагрузке 9. Этим же электрическим током, протекающим по плазме, поддерживают температуру электронов на уровне ~104 K и таким образом, выполняют условия поддержания плазмы в состоянии "замороженной ионизации".

Для численного исследования процесса инициирования плазменного сгустка в потоке инертного газа была создана расчетная модель, в которой совместно с уравнениями магнитной газодинамики решались уравнения многоуровневой ионизационной кинетики, включавшие следующие элементарные процессы: столкновение возбужденных атомов с электронами, радиационные переходы, дезактивирующие столкновения с атомами, образование молекулярных ионов, процессы рекомбинации в двойном столкновении молекулярного иона и электрона и тройном столкновении атомарного иона и двух электронов. Константа скорости реакции возбуждения из основного состояния определялась в результате численного решения кинетического уравнения Больцмана с учетом неравновесной заселенности первого возбужденного состояния. Кинетическая модель тестировалась путем сопоставления расчетных результатов с экспериментальными данными по значениям коэффициентов Таунсенда и с экспериментальными данными по свойствам контрагированного разряда в неоне. Факт хорошего совпадения расчетных и экспериментальных результатов говорит об адекватности модели реальному процессу.

Численное моделирование генераторного процесса, реализующего описанный способ, показало, что в потоке неона с параметрами торможения Г=2000К, Р=1 МПа может быть осуществлен процесс преобразования тепловой энергии в электрическую с показателями эффективности: степень преобразования энтальпии - 39%, адиабатический КПД - 78%.

Особую важность это изобретение может обрести при создании мощной космической электростанции

Рис. Устройство для преобразования тепловой энергии.