Система охлаждения сжатого газа на компрессорной станции магистрального газопровода

Номер документа 7220150011

РУБРИКА:
13. Деятельность предприятий и организаций по энергосбережению

РУБРИКА ГРНТИ:
73.39.41. Техническая эксплуатация и ремонт средств трубопроводного транспорта

АТРИБУТЫ:
Отрасли: нефтегазовая
Тепловая энергия:
Электрическая энергия:
Виды топлива:
Водные ресурсы:

РЕКВИЗИТЫ:
Вид документа: Патент
Номер: 2116584
Автор (принявший орган): ТюмГНГУ, 625000, г.Тюмень, ул. Володарского, 38, (3452)256912, unir@tsogu.ruКаменских И.А
Дата: 27.07.1998
Регион: Тюменская область
Источник информации: freepatent.ru

ПОЛНЫЙ ТЕКСТ ДОКУМЕНТА:

Система охлаждения относится к энергосберегающим технологиям транспорта газа и может быть использовано при создании автоматизированной системы управления технологическим процессом магистрального газопровода. Выход нагнетателя газоперекачивающего агрегата (ГПА) соединен со входом трубного пространства испарителя теплового насоса, а его вход - с началом линейного участка магистрального газопровода. Компрессор теплового насоса соединен с валом двигателя ГПА. Выход и вход трубного пространства конденсатора теплового насоса соединены с потребителями тепловой энергии. На трубе газопровода и в грунте на глубине его укладки установлены датчики температуры, выходы которых подключены к вычислительному устройству, а выход последнего соединен со входом блока управления приводом ГПА. Введение теплового насоса в систему охлаждения сжатого газа на компрессорной станции позволит утилизировать вторичные энергетические ресурсы и рационально использовать первичные топливно-энергетические ресурсы за счет синхронного регулирования производительностей нагнетателя ГПА и теплового насоса при изменениях газопотребления и (или) температурного режима магистрального газопровода. Цель изобретения - энергосбережение.
Указанная цель достигается тем, что выход нагнетателя газоперекачивающего агрегата (ГПА) соединен со входом трубного пространства испарителя теплового насоса, а его выход - с началом линейного участка магистрального газопровода. Компрессор теплового насоса соединен с валом двигателя ГПА. Выход и вход трубного пространства конденсатора теплового насоса соединены с потребителями тепловой энергии. На трубе газопровода и в грунте на глубине его укладки установлены датчики температуры, выходы которых подключены к вычислительному устройству, а выход последнего соединен со входом блока управления приводом ГПА.
Сравнение заявляемого решения с другими техническими решениями показывает, что тепловые насосы широко известны, но для отбора тепла от транспортируемого газа по магистральным газопроводам не применяются. Введение теплового насоса в систему охлаждения сжатого газа на компрессорной станции позволит утилизировать вторичные энергетические ресурсы и рационально использовать первичные топливно-энергетические ресурсы за счет синхронного регулирования производительностей нагнетателя ГПА и теплового насоса при изменениях газопотребления и (или) температурного режима магистрального газопровода.
На чертеже представлена структурная схема системы охлаждения сжатого газа на компрессорной станции магистрального газопровода.


На схеме показаны нагнетатель Н газоперекачивающего агрегата с приводным двигателем М и линейная часть Г магистрального газопровода, между которыми установлен тепловой насос ТН, а также приемники тепловой энергии ПТЭ.
Тепловой насос ТН содержит:

испаритель 1, по трубному пространству которого проходит поток сжатого газа (теплоотдатчик);

контур циркуляции хладагента, состоящий из компрессора 2, приводимого двигателем М, вход которого соединен с межтрубным пространством испарителя 1, а выход - с межтрубным пространством конденсатора 3, хладопровода 4, вентиля 5.
Трубное пространство конденсатора 3 теплового насоса, по которому циркулирует теплоприемник, отбирающий тепло от хладагента, соединено теплопроводом 6 с потребителями тепловой энергии ПТЭ.
После теплового насоса ТН в начале линейного участка газопровода установлен датчик температуры трубы ДТ1, а в грунте на глубине укладки трубопровода за пределами зоны его теплового поля установлен датчик температуры ДТ2, выходы которых соединены с вычислительным устройством ВУ. Выход устройства ВУ подключен к блоку управления приводом БУП нагнетателя Н газоперекачивающего агрегата и компрессора 2 теплового насоса.
Система охлаждения работает следующим образом.
Сжатый нагнетателем Н газ повышенной температуры поступает в трубное пространство испарителя 1 теплового насоса ТН и далее - в линейную часть Г магистрального газопровода. В межтрубное пространство испарителя 1 подается хладагент, который под действием температуры газа (теплоотдатчика) вскипает, а его пары отсасываются компрессором 2, благодаря чему в испарителе 1 постоянно поддерживается низкое давление и, следовательно, низкая температура. Сжатые компрессором 2 пары хладагента нагнетаются по хладопроводу 4 в межтрубное пространство конденсатора 3, где охлаждаются теплоприемником, циркулирующим по его трубному пространству и теплопроводу 6, в результате чего конденсируются. Из конденсатора 3 жидкий хладагент, пройдя вентиль 5, поступает в испаритель 1, затем рабочий цикл повторяется.

 Датчиком ДТ1 измеряется температура трубы газапровода, а датчиком ДТ2 - температура грунта, сигналы которых подаются на вычислительное устройство ВУ. При изменениях газопотребления и (или) температурного режима газопровода (когда температура трубы отличается от температуры грунта) устройство ВУ формирует сигнал для блока управления приводом БУП. С помощью последнего регулируют частоту вращения двигателя М и тем самым одновременно изменяют производительность нагнетателя Н и количество отбираемого тепла от потока газа тепловым насосом ТН.
Использование предлагаемой системы охлаждения газа на компрессорной станции магистрального газопровода обеспечивает по сравнению с существующими системами утилизацию вторичных энергоресурсов в полном объеме. Кроме того, автоматическое управление процессом охлаждения потока сжатого газа при изменениях режима работы газопровода обеспечивает рациональное использование первичных топливно-энергетических ресурсов, а выравнивание температур газопровода и грунта практически полностью устраняет температурные деформации газопровода и разрушения его противокоррозионной изоляции, за счет чего повышается эксплуатационная надежность магистрального газопровода.